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This is the supplemental material of the paper "Primary-Space Adap-
tive Control Variates using Piecewise-Polynomial Approximations"
submitted to ACM Transactions on Graphics. It includes:

• Section S.1 - Detailed convergence analysis.

• Section S.2 - Additional analysis of our adaptive residual

ratio tracking.

• Section S.3 - Breakdown of the temporal and memory cost

of our technique.

• Section S.4 - Comparison between our unbiased technique

and pure adaptive nested quadrature integration.

• Section S.5 - Results of combining our technique with de-

noising.

• Section S.6 - Analysis of the in�uence of the variance of

higher dimensions during the construction of the piecewise

polynomial.

• Section S.7 - Analysis of our method’s convergence when

the control variate approximates poorly the signal.

S.1 DETAILED CONVERGENCE ANALYSIS

In this appendix we show the individual integrals used to analyze

the performance of our technique (Section 4.4 in the main document)

depending on the number of samples used to build the control variate

and for estimating the residual. Figures 1 (2D), 2 (3D) and 3 (4D) show

the individual integrals including their grayscale representation

along with the corresponding control variate approximation and

the residual. Also, as in Figure 4 in the main document, we present

for each integral the error, time and the product between cost and

error. For each function, we also include the performance when

integrating the full domain and projecting the integrand into buckets

We start by analyzing the lower dimensional experiments, fea-

tured in Figure 1 where we use our technique to integrate 2D func-

tions. It can be seen how the performance is directly correlated with

the high-frequency details of the functions: functions like the one

in the �rst row, which is low frequency, are easily integrated (as

can be seen in the control variate and residual). However, function

with more complex details (like the last two rows) generate a higher

residual because the control variate has more trouble �tting such

high frequency details. Nevertheless, the bene�ts of our technique

improve when projecting the integral into a set of buckets due to

the reusing of the control variate between all bins.
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- I3A; Adrian Jarabo, ajarabo@unizar.es, Universidad de Zaragoza - I3A, and Centro

Universitario de la Defensa Zaragoza; Adolfo Muñoz, adolfo@unizar.es, Universidad

de Zaragoza - I3A.

In Figure 2 where we analyze 3D functions. The left column

show a set of di�erent 2D slices of the function. It can be seen how

the increased dimensionality penalizes the e�ciency of the control

variate samples (quadrature, horizontal axis) while Monte Carlo

samples for the residual maintain its performance, but as in the

previous experiments, projecting into buckets improves the overall

performance. This trend is also followed by 4D functions (Figure 3,

left column shows a subset of the 2D slices of the function), where

the e�ciency of the quadrature samples is reduced even further but

again the projection into buckets makes it worth the performance

decrease.

Furthermore, note that as the nested quadrature technique (bot-

tom row in all performance plots) is deterministic, the convergence

along its number of samples is not predictably decreasing: in some

circumstances, adding new subdivisions might actually increase the

error, and some error minima appear for a speci�c integrand and a

speci�c number of samples. The global tendency is, nevertheless,

decreasing error as the number of samples increase. Finally, the

global tendencies identi�ed in Section 4.4 of the paper also hold in

individual function calculations with small per-function variations.

S.2 ADDITIONAL ANALYSIS OF ADAPTIVE RESIDUAL

RATIO TRACKING

In this section we present more convergence analysis of our tech-

nique used to compute transmittance in heterogeneousmedia, which

was presented in Section 5 of the main document. Figure 4 shows

the convergence of our method compared to residual ratio track-

ing [Novák et al. 2014] with constant precalculated `2 (set to `2 =∫ C

0
` (xB )3B , which is the optimal parameter according to the au-

thors) and delta tracking [Woodcock et al. 1965] for three di�erent

procedural heterogeneous media. In all cases we use the same tight

majorant ¯̀ = maxx (` (x)). We build our polynomial approximation

performing three iterations, so that the introduced overhead is not

very dramatic. These three iterations result into nine additional

queries to the medium extinction.

As expected, the performance of both residual ratio tracking [Novák

et al. 2014] and our method relate with the quality of approximation

(i.e., the variance in the residual). For the cases where residual ratio

tracking performs well (as in medium a) our technique in general

performs similarly, since the approximation does not introduce sig-

ni�cant error compared with a constant control. However, in cases

where our technique is able to faithfully adapt to the signal (e.g., in

cases with non-uniform densities like in media b and c), it signi�-

cantly outperforms residual ratio tracking, without introducing a

signi�cant overhead (as can be seen in the light blue plots showing
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Fig. 1. Integration of a two-dimensional function (image) per row. From le� to right: grayscale representation of the function; piecewise polynomial control

variate (boundaries of each region marked in green); residual of the control variate (underestimation in red, overestimation in blue); two dimensional

convergence plots (log scale) exploring samples per pixel for a full 2D integral; two dimensional convergence plots (log scale) with amortization of control

variate samples along 1000 buckets (pixels) in the horizontal axis. For each convergence plot, we show error, time, the product of both and the product of total

number of samples and error in a colored logarithmic scale.
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Function Full integral performance Performance for 1000 pixels on the G axis
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Fig. 2. Integration of a three-dimensional function (video) per row. From le� to right: grayscale representation of the function consisting in di�erent frames of

the sequence; two dimensional convergence plots (log scale) exploring samples per pixel for a full 3D integral; two dimensional convergence plots (log scale)

with amortization of control variate samples along 1000 buckets (pixels) in the horizontal axis. For each convergence plot, we show error, time, the product of

both and the product of total number of samples and error in a colored logarithmic scale.

Function Full integral performance Performance for 1000 pixels on the G axis
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Fig. 3. Integration of a four-dimensional function (lightfield) per row. From le� to right: grayscale representation of the function consisting in a subset of

the images constituting the lightfield; two dimensional convergence plots (log scale) exploring samples per pixel for a full 4D integral; two dimensional

convergence plots (log scale) with amortization of control variate samples along 1000 buckets (pixels) in the horizontal axis. For each convergence plot, we

show error, time, the product of both and the product of total number of samples and error in a colored logarithmic scale.

the residual values taken respectively from the control extinction

`2 (GB )).

S.3 TEMPORAL AND MEMORY COST OF OUR

TECHNIQUE

In this section we present the temporal breakdown of our technique

separated into each stage. We illustrate the temporal distribution for

the scenes of the paper in Table 1. This distribution is a�ected by the

number of dimensions of the control variate. For lower dimension-

alities the overhead is smaller compared to the cost of evaluating

the integrand (12% to 34%) but higher dimensionality increases such

overhead (up to a 75.5% with 6 dimensions). Also, the temporal

breakdown is greatly a�ected with the cost of evaluating the inte-

grand: in very simple scenes such cost is small so the overhead of our

integration techniques is more noticeable, while in the case of very

complex scenes (many geometrical primitives) our overhead can

become negligible (which is coherent with the convergence tests in

the paper). Between di�erent stages, generating the control variate

has usually a higher cost than evaluating it. However, the higher

overhead generally comes from integrating the control variate.

Furthermore, we show in Table 2 a comparison of the memory

usage of the scenes presented in Section 8 in the main document, in
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Fig. 4. Comparison of our adaptive residual ratio tracking against delta tracking [Woodcock et al. 1965] and residual ratio tracking with constant control [Novák

et al. 2014], for three di�erent procedural heterogeneous media. The extinction of each medium is generated using a) fractional Brownian noise, b) a cosine

function, and c) a cosine function weighted by a wide sigmoid. For each medium we show (le� to right): (top) The extinction coe�icient of the medium (garnet)

and our polynomial control approximation (dark green); (bo�om) the convergence of delta tracking (purple), residual ratio tracking (orange), and our adaptive

residual ratio tracking (green); the residual and numerical approximation of our method (top) and Novak’s residual ratio tracking (bo�om), both for 512

samples (shown in light blue).

which we show a reasonable but manageable overhead over Monte

Carlo in terms of memory consumption that is used for storing

the control variate. Compared to Hachisuka et al.’s method [2008]

(which also store samples in a speci�c data structure) our technique

presents a much lower memory footprint. This is due to the fact

Hachisuka et al.’s method requires to store all samples in a K-D

tree data structure while our algorithm requires to store only the

samples for the control variate (1/16 of the total samples)

S.4 COMPARISON WITH NESTED QUADRATURE

In this section we compare our approach with pure adaptive nested

quadrature rules for several scenes. Note that we have already in-

cluded in Section 6 of the main text a comparison between quadra-

ture integration [Muñoz 2014] in the context of low-order scattering,

but we extend such analysis for higher dimensionality. This is equiv-

alent to rendering with our control variate without dedicating any

Monte Carlo sample for the residual.

We analyze Simpson-Trapezoidal (orders two and one, as our con-

trol variate) and Boole-Simpson (orders four and two) and compare

them with our results for the same number of samples.

In Figure 5 we show a comparison between the adaptive nested

quadrature introduced above versus our Adaptive Residual Ratio

Tracking (Section 5 of the main text) at an equal number of queries

to the media. Note that using pure quadrature for estimating the

transmittance, even though it is a soft domain, smaller �ne-grained

details are missed. The resulting artifacts can be seen in Smoke

scene, where Simpson-Trapezoidal rule miss a lot of details even

when applied adaptively. On the other hand, Boole-Simpson nested

rule reduces the number of artifacts but does not eliminate them. In

contrast, our technique keeps the bene�ts of the low-frequency do-

main but recovering all high-frequency details of the heterogenous

medium.

Figure 6 shows an equal time comparison of quadrature rules

versus our technique for rendering distribution e�ects (Section 8

Simpson-Trapezoidal Boole-Simpson Ours
H

et
vo

l
Sm

ok
e

Reference

Fig. 5. Comparison between adaptive nested quadrature using Simpson-

Trapezoidal rules (le�) and Boole-Simpsons rules (middle) versus our Adap-

tive Residual Ratio Tracking (right) at an equal number of queries to the

media. Artifacts in the images has been marked with a red arrow for easier

viewing. Note how depending on the heterogeneity of the media, quadrature

rules can miss portion of the signal ignoring fine-grained details. In contrast,

our technique is able to recover from that misses.

of the main text). Again, quadrature rules have trouble integrating

heavy gradients such as occlusion boundaries in the scene, and

some important high frequency features are even missed (see Chess

and Helicopter scenes for example). By incrementing the order of

the quadrature rule (Bool-Simpson) more details are reconstructed

(boundaries are improved) but the Runge phenomenon appears:
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Table 1. We present in this table a temporal breakdown of our technique (in percentages) of the time to generate the regions of the control variate, the time it

takes to compute the residual and the time needed to do the sampling. We also show the temporal cost of both evaluating and integrating the control variate

plus the time that cost to generate the data structure used in our implementation (all already included in the residual time). We don’t show time for obtaining

the optimal alpha because it is negligible. Last column indicate the dimensionality of the control variate and (*) mark that although it is built using only that

dimensions, the integral has more dimensions.

Scene Generate CV Residual Sampling Evaluate CV Integrate CV Data structure Dim CV

Pumpkin 3.1% 9.11% 87.7% 0.01% 0.5% 8.6% 3D

Occluder 6.9% 81.73% 11.3% 0.07% 9.2% 72.46% 3D

Laser 1% 97.62% 1.33% 0.02% 41% 56.6% 4D

GreenDragon 1.1% 83.1% 15.76% 0.03% 35.87% 47.2% 4D

Pool 6% 27% 66% 0.09% 2.1% 24.81% 3D

Chess 6% 20% 73% 0.05% 5% 14.95% 4D

Helicopter 3.1% 64% 31% 19.7% 28.7% 15.6% 5D

Volley Balls 1.8% 73.7% 24% 48% 21% 4.7% 6D

Violin 2.7% 71% 25% 0.01% 51% 19.99% 4D

House 4.57% 61% 33.55% 0.13% 25.49% 35.38% 4D

Classroom 3.38% 46% 50.5% 0.14% 21.27% 24.59% 4D

Bistro 1.09% 6.81% 92.57% 0.083% 2.8% 3.97% 4D*

Table 2. Report of the memory usage (in GiB) of the results shown in Section

8 in the main document. Monte Carlo can be interpreted as the baseline of

the memory consumed by the geometry of the scene. Note that, although

our method has a higher memory consumption than Monte Carlo, it still

remains manageable as the number of samples increases.

Scene Spp Resolution Monte Carlo [Hachisuka et al. 2008] Ours

Pool 64 875x1000 0.100 31.959 0.255

Chess 64 750x1000 0.304 29.607 0.497

Helicopter 64 960x540 0.184 27.489 0.532

Volley Balls 64 720x480 0.312 23.170 0.478

unwanted oscillations of the polynomial near boundaries appear as

perceivable artifacts.

In contrast, our technique does not su�er from these artifacts

achieving sharp high-frequency details and recovering the signal

that could be missed in the control variate. This same behavior can

be seen in Figure 7 where we compare the same techniques in the

domain of direct light integration (Section 7 of the main text).

Generally speaking, quadrature rules are biased, while our ap-

proach is not, and such bias results in unpleasant structured artifacts

that can be perceivable. Besides our faster convergence, the error

from our technique is not structured but high frequency, which is

visually more pleasant.

S.5 COMBINATION WITH DENOISING

Our technique combines the advantages of polynomial approxima-

tions without incurring in bias (by including stochastic evaluation

using Monte Carlo integration of the residual). When we calculated

our residual, we distribute our samples to correct the ”existing”

bias of the piecewise polynomial approximation, generating high

frequency noise. A popular technique that can improve this (when

adding more sample budget can be prohibitive) is denoising the

results.

State of the arts denoisers are capable of achieve noise-free images

generated with a low-sampling regime. Given that the residual only
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Fig. 6. Equal time comparison of integrating distribution e�ects between

using adaptive nested quadrature Simpson-Trapezoidal (le�) and Boole-

Simpson (middle) rules versus our technique (right). Note how quadrature

rules has trouble in high-frequency edges of the scene and when the di-

mensionality increase (from top to bo�om: 3D, 4D, 5D, 6D). However, our

technique is capable of recover both low-frequency areas and high-frequency

details of the scenes.

has that high-frequency noise, we can apply a denoiser to remove it.

We use Bako et al.’s work [2017], which needs several bu�ers with

information about the image to be denoised: �rst it need the radiance

separated in its di�use and specular components. Secondly, it needs

some auxiliary information about the scene as normals, albedo and

depth (we gather it using the residual’s samples information). Finally,
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Fig. 7. Comparison between using adaptive nested quadrature Simpson-

Trapezoidal (le�) and Boole-Simpson (middle) rules versus our technique

(right) at an equal time for integrating direct illumination. Note how quad-

rature rules keep clean the low-frequency areas but su�ers from achieving

sharp edges (even adding artifacts). Moreover, our technique is able to re-

cover the fine-grained details in the borders while working smoothly in so�

shadows.

for all the above information, its variance per pixel is also calculated

(we use the variance of the residual estimation).

Figure 8 shows some denoising experiments in images generated

by our technique using only 8 samples per pixel (the minimum

amount usually computed in combination with denoisers). In such

low-sampling regime, our technique does not excels versus Monte

Carlo, even introducing noise that cannot be processed well using

denoisers. On the other hand, Figure 9 shows results using a higher

sampling count, in which our method can be processed correctly by

denoisers, but introducing bias as blurred regions in the images (i.e.,

shadows in the bench or borders in Volley scene). In conclusion, our

technique is not only agnostic to importance sampling strategies,

but also to post-processing denoising algorithms. Being unbiased,

our technique clearly bene�ts from the usage of a denoiser.

S.6 VARIANCE IN HIGHER-ORDER QUADRATURE

In Section 9 of the main text we analyze the performance of our

control variate in high-dimensional problems by building a low-

dimensional control variate on top of an estimate of the high-

dimensional integral. However, this strategy introduces variance

which depends on the number of samples used in the estimator.

To analyze the e�ect of such variance in the result, we present in

Figure 10 an experiment that we compute using di�erent number

of samples to estimate the higher dimensions. Note that we are

not applying the residual correction, therefore we have only the

piecewise polynomial with artifacts in discontinuities. It can be seen
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Fig. 8. Comparison of denoised results from both our technique and Monte

Carlo (le� image is the reference). Owing to the number of samples is very

low (8spp), our technique is not able to obtain a good control variate and

shows more visible noise.

how the number ofMonte Carlo samples used the construction of the

control variate a�ect directly the quality of the illumination captured

in the approximation: Using only one sample lead to noticeable

artifacts. On the other hand, we observe that increasing sampling

count beyond fourMonte Carlo samples do not improve signi�cantly

the accuracy of the �nal result.

S.7 ANALYSIS OF CONVERGENCE IN ARTIFACTS

In this section we analyze how evolve the convergence of our

method when the control variates fails to adapt to the signal. This

e�ect can be seen as rectangular zones of the image with an increase



Supplemental material: Primary-Space Adaptive Control Variates using Piecewise-Polynomial Approximations • 7

DenoisedOursRef

D
ra

go
n

 S
u

n
B

en
ch

V
io

li
n

V
ol

le
y 

B
al

ls

Fig. 9. Comparison between our results versus those obtained a�er denois-

ing (le� image is the reference). It can be seen that our technique can be

denoised using conventional techniques while having the same problems

related with overblurring or artifacts coming from the biased denoiser.

of noise respecting to the near areas, being something similar to

what happen with other adaptive methods.

Figure 11 shows 3 di�erent insets of regions dominated with such

artifacts with an increasing number of samples. While our method

su�ers from that challenge with low sampling counts, it can be

seen how such artifacts disappear at the same rate as the control

variate improves. Because of our ratio explained in Section 4.4 in

the main document, the re�nement of the adaptive approximation is

linked directly with the computation budget, therefore our method

always improves. In addition, we present in Section 4.2 in the main

document that our error estimation takes into account the size of

the divisions, which allows to re�ne the areas where the artifacts
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1 sample 4 samples 16 samples Reference

Fig. 10. Experiment of how the number of samples used to estimate the

high-dimensional integral influence the piecewise approximation. For each

rendering we show in addition the error map with respect to the reference.

Note how a few samples are enough to avoid the most noticiable light

artifacts. All results are calculated using 256 spp.

are generated because of a erroneous estimation of the error. Nev-

ertheless, our method’s error is always lower than Monte Carlo

integration even in that regions.
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Fig. 11. Experiment comparing the convergence of our method versus Monte Carlo in areas of the image featuring a bad approximation of our control variate

(at low sample count). First two rows are Classroom scene, and the last one is Pumpkin scene. Error metric is computed only in the inset area. Note how

increasing the sample count is linked directly with how much refinement is done by our control variate and therefore, increasing it allows to remove any

possible artifact in the final image.
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