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Fig. 1. Bistro: Unbiased rendering of a complex scene with global illumination (22 indirect bounces, resulting in a 48-dimensional integration domain).
Traditional Monte Carlo-based rendering results in high variance even with importance sampling techniques. In contrast, our technique combines multiple
importance sampling with an adaptive piecewise-polynomial control variate (4D in this example): Our control variate closely approximates the low-frequency
regions of the signal, while leaving the high-frequency details on the residual, which is estimated using Monte Carlo integration. This results in lower variance
with faster convergence. Except for the reference, the images were generated using 512 samples per pixel.

We present an unbiased numerical integration algorithm that handles both

low-frequency regions and high-frequency details of multidimensional

integrals. It combines quadrature and Monte Carlo integration by using a

quadrature-based approximation as a control variate of the signal. We

adaptively build the control variate constructed as a piecewise polynomial,

which can be analytically integrated, and accurately reconstructs the

low-frequency regions of the integrand. We then recover the

high-frequency details missed by the control variate by using Monte Carlo

integration of the residual. Our work leverages importance sampling

techniques by working in primary space, allowing the combination of

multiple mappings; this enables multiple importance sampling in

quadrature-based integration. Our algorithm is generic, and can be applied

to any complex multidimensional integral. We demonstrate its e�ectiveness

with four applications with low dimensionality: transmittance estimation in

heterogeneous participating media, low-order scattering in homogeneous
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media, direct illumination computation, and rendering of distribution

e�ects. Finally, we show how our technique is extensible to integrands of

higher dimensionality by computing the control variate on Monte Carlo

estimates of the high-dimensional signal, and accounting for such

additional dimensionality on the residual as well. In all cases, we show

accurate results and faster convergence compared to previous approaches.
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1 INTRODUCTION
Numerical integration forms the basis of rendering algorithms, as

light arriving to a sensor (pixel) is formulated as an integral. Given

the speci�c nature of this integrand, Monte Carlo (MC) [Cook et al.

1984] is the most commonly applied numerical integration method.

However, while general and robust, MC might converge slowly to

the desired solution, introducing signi�cant variance that leads to

high-frequency noise even in smooth regions.

Several methods have been proposed to successfully reduce such

variance, including (multiple) importance sampling [Veach 1997],
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low-discrepancy sequences [Owen 2013], or MC variants based on

Markov chains [Šik and Krivanek 2018]. However, variance is still a

visible artifact in low-frequency areas, where stochastic methods

su�er the most. In contrast, deterministic integration methods and

in particular quadrature integration [Burden and Faires 2005] excel

at such smooth integrals, providing signi�cantly faster

convergence rates for relatively smooth low-dimensional

integrands. Unfortunately, these methods introduce bias in the

results, and perform poorly in discontinuities and high-frequency

details.

In this work we present a new unbiased numerical integration

technique for low-dimensional integrals, capable of accurately

handling both low-frequency and high-frequency areas of the

signal. Our technique combines quadrature- and Monte

Carlo-based methods, which allows us to leverage the strengths of

both techniques. We �rst adaptively build a low-dimensional

multivariate polynomial approximation of the signal using nested

(adaptive) quadrature rules [Burden and Faires 2005]. Then, we use

this approximation as a control variate, and compute the residual

using Monte Carlo integration. Intuitively, the control variate

accurately approximates the low-frequency low-dimensional

content, while Monte Carlo integration recovers the residual

high-frequency details.

Our technique performs the integration in primary space, which

allows us to take advantage of any importance sampling technique

for error reduction in both the polynomial approximation and the

residual estimation. Moreover, we demonstrate that several

sampling (i.e., warping) techniques can be combined in quadrature

via multiple importance sampling (MIS) [Veach and Guibas 1995],

which generalizes the potential of MIS for error reduction to

quadrature-based integration. In addition, our control variate is

computed adaptively by using an accurate error estimation,

allowing for importance sampling of the residual.

Our integration technique is generic, not necessarily tied to

rendering, agnostic to the integrand, and can be combined with any

importance sampling technique. We demonstrate its performance

in four rendering applications with di�erent dimensionality, with

results showing reduced variance and faster convergence in

multidimensional integrals with low-dimensionality, and better

results for the same number of samples than competing methods.

Finally, we demonstrate that our technique is competitive in

higher-dimensional light transport integrals by building

low-dimensional quadrature-based control variates using Monte

Carlo estimates of the function.

In summary, our work presents the following contributions:

• A new unbiased integration technique for low-dimensional

integrals that combines the strengths of MC and quadrature

methods. Our technique is adaptive, leverages any

importance sampling strategy for variance reduction, and

amortizes samples between di�erent pixels (or frames).

• A generalization of multiple importance sampling to

quadrature-based integration, which we leverage in our

integration technique.

• Several practical rendering applications of our technique,

including transmittance estimation in heterogeneous media,

low-order scattering in homogeneous media, direct

illumination computation, and rendering of distribution

e�ects.

Limitations: Our technique has some limitations: First and

foremost, given the curse of dimensionality in quadrature-based

methods, the control variate is only generated in low-dimensional

subdomains of the integrand. However, as we show in our

applications, there is a large number of subproblems in rendering

that can bene�t from our technique. Additionally, we show that

additional dimensions (e.g., high-order light bounces) can be

included in our framework, taking advantage of the variance

reduction in lower dimensions while enabling integrals of higher

dimensionality. Our technique also introduces an overhead with

respect to plain Monte Carlo, which is nevertheless amortized by

the variance reduction achieved with our technique, and becomes

negligible compared to costly integrand evaluations (such as

rendering complex scenes). A third limitation is that, given the

nature of our control variate, our technique is o�ine, and it does

not re�ne the control variate when additional samples are

introduced. Finally, similarly to other adaptive methods, our

technique can su�er from areas with uneven convergence, which

might lead to blocky artifacts at low sampling rates.

2 RELATED WORK
Numerical integration in rendering. Monte Carlo integration is

the standard for simulating light transport [Cook et al. 1984; Veach

1997]. To reduce variance, several importance sampling strategies

have been developed, from strategies targeting low-dimensional

subproblems (e.g., area light sampling [Guillén et al. 2017; Ureña

et al. 2013] or low-order volume scattering [Kulla and Fajardo 2012;

Novák et al. 2012]) to high-dimensional path-guiding

methods [Müller et al. 2017; Müller et al. 2019; Vorba et al. 2014;

Zheng and Zwicker 2019]. Our work is complementary to those,

and can leverage any importance sampling strategy (even multiple)

by working in primary sample space. Other works aim to reduce

variance by carefully positioning samples adaptively to the signal

and using advanced techniques for reconstruction from those

samples [Zwicker et al. 2015]. Several approaches exist either by

partitioning the sample space [Hachisuka et al. 2008; Kajiya 1986],

on-the-�y frequency analysis of the signal [Belcour et al. 2013;

Durand et al. 2005], gradient information [Jarosz et al. 2008; Marco

et al. 2018; Ramamoorthi et al. 2007; Ward et al. 1988], or machine

learning [Gharbi et al. 2019]. Our technique also positions samples

adaptively for constructing the control variate based on

multivariate nested quadrature rules. Gradient-based

techniques [Hua et al. 2019; Kettunen et al. 2015] reconstruct an

unbiased �nal image by computing its gradients via Monte Carlo

estimation, followed by a Poisson reconstruction. On the other

hand, our work focuses on unbiased integration; potentially it

could work on the gradient domain to leverage the good properties

of gradient-based methods. Finally, denoising techniques trade o�

variance for bias, and remove noise from the �nal image using

sophisticated �lters with adaptive kernel bandwidths [Rousselle

et al. 2012], local regression to low-order functions [Bitterli et al.

2016], or machine learning [Bako et al. 2017]. Our technique works
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in sample space and focuses on unbiased integration of light

transport sub-problems. Potentially, it could be followed by a

denoising pass to remove the remaining variance.

Quadrature rules. There has been a lot of research involving

quadrature rules [Stroud and Secrest 1966; Ziegel 1987] and in

developing adaptive schemes to increase their accuracy [Berntsen

et al. 1991; Genz and Malik 1980]. In computer graphics, quadrature

integration is somewhat less explored. A notable widespread

exception is the integration from distant light through spherical

harmonics [Ramamoorthi and Hanrahan 2001, 2002]. Brouillat et

al. [2009] and Marques et al. [2013] proposed to use Bayesian

quadrature to integrate the incident illumination. In the context of

rendering participating media, rectangle quadrature rules have

been used for ray marching [Perlin and Ho�ert 1989] or volumetric

photon mapping [Jensen and Christensen 1998]. Later, Muñoz

proposed using higher-order quadrature rules [Muñoz 2014], while

Johnson et al. [2011] used Gaussian quadrature to accelerate the

photon beams algorithm. All these works are case-speci�c for

low-dimensional integrals, and introduce bias in the solution. Our

work proposes an unbiased and generic (not tied to any speci�c

problem) numerical integration method by devising quadrature

integration as a control variate. Moreover, we demonstrate how

multiple importance sampling can be applied in the context of

quadrature integration.

Control variates. Control variates have remained relatively

unexplored in rendering compared to other variance reduction

techniques like importance sampling. Lafortune and Willems

proposed using an ambient term [Lafortune and Willems 1994],

and a directional piecewise approximation of indirect

radiance [Lafortune and Willems 1995] as control variate for

di�use illumination. Fan et al. [2006] presents an estimator based

on control variates that varies over the scene depending on surface

properties and lighting conditions, unlike previous work that only

uses one generic estimator for all the scenes. Clarberg and

Akenine-Moeller [2008] used an approximation of the visibility

function as control variate for computing illumination from

environment maps. Rousselle et al. [2016] explored two

sophisticated applications of control variates in rendering:

re-rendering when changing material properties, and a

gradient-domain rendering reconstruction strategy. In both cases

the control variate is constructed in image space, while our

approach can explore any required dimensions of light transport,

as illustrated in several applications. Keller [2001] proposed using

Multilevel Monte Carlo [Heinrich 2001] for rendering, leveraging

low-resolution renderings as a control variate of higher-resolution

ones. Our approach shares a similar idea, but uses adaptive

quadrature to build the control variate, and works over arbitrary

sub-domains of the light transport integral. Recently, Kondapaneni

et al. [2019] showed that optimal weights for multiple importance

sampling can be interpreted as carefully-chosen control variates.

Spherical harmonics-based control variates have been applied to

integrate environment lighting with anisotropic geometry with

tangent environment maps [Mehta et al. 2012], and have been

applied with polygonally-clipped incident lighting such as area

lights where the control variate accounts for the higher bandwidth

lighting [Belcour et al. 2018]. Vévoda et al. [2018] used control

variates to obtain an unbiased approximation of the incident direct

illumination computed using a Bayesian regression model. In

contrast, our method is agnostic to the signal being integrated and

the control variate handles multidimensional integrals because it is

obtained with a multidimensional nested quadrature rule, therefore

it accounts for more phenomena besides incident lighting. Close to

our work, Müller et al. [2020] learn a parametric control variate for

incident light in a multidimensional domain using neural networks.

While their approach is very powerful, it requires sophisticated

learning architectures. In contrast our work uses relatively simple

polynomials based on well-studied nested quadrature rules.

Finally, carefully chosen constant control variates have also been

used for reducing variance in transmittance estimation in the

presence of participating media [Kutz et al. 2017; Novák et al. 2014].

We demonstrate that our adaptive polynomial can easily be

plugged into these frameworks, resulting in signi�cant variance

reduction in some cases.

3 PRELIMINARIES

3.1 Numerical integration
Any general integration problem is expressed as

� = E[5 (G)] =
∫
Ω
5 (G) 3` (G) , (1)

where � is the integral, de�ned as the expected value E[·] of the
function 5 (G) on the integration domain Ω, G ∈ Ω represents a

di�erential element of the domain and ` (G) is the measure of the

variable within the domain. Monte Carlo integration numerically

approximates Equation (1) as

� ≈ 〈� 〉# =
1

#

#∑
8=1

5 (G8 )
? (G8 )

, (2)

where # is the number of samples used to estimate 〈� 〉# , G8 is a

randomly sampled element of the domain, and ? (G8 ) is the

probability distribution function (pdf), that describes the

probability of selecting G8 as the 8th sample. Choosing a good pdf

that approximates the integrand is key to reduce the variance of

〈� 〉# ; this is often called importance sampling.

3.2 Primary space
The integration domain Ω can be di�cult to treat (presents

manifolds or high-order complex structures). However, by

considering the sampling strategy as a change of variable, where

pdf ? (G8 ) in Equation (2) is its Jacobian [Muñoz 2014], it is possible

to transform the integral domain Ω into a primary space Ω* of

random numbers, de�ned as the unit hypercube

Ω* =
⋃∞

�=1
[0..1]� [Kelemen et al. 2002]. The domains Ω and Ω*

are related by the mapping G = %−1 (D̄) , where %−1 (D̄) is the

inverse of the cumulative function of ? (G8 ) . By applying the

change of variables de�ned by mapping %−1 ( ·) , and given that

3D̄ = ? (G) 3` (G) , we can rede�ne Equation (1) as

� =

∫
Ω*

5
(
%−1 (D̄)

)
?
(
%−1 (D̄)

) 3D̄. (3)
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Multiple mappings in primary space. Equation (3) assumes a

single mapping %−1 : Ω* ↦→ Ω. However, multiple mappings can

be used in practice, and their choice (i.e., the technique used to

sample G ) can dramatically a�ect the variance of the estimate 〈� 〉# .

Multiple importance sampling (MIS) [Veach and Guibas 1995]

allows to optimally combine multiple mappings by weighting the

contribution of each sample G8 depending on the technique used to

generate it. We can generalize Equation (3) to an arbitrary number

of mappings ) :

� =

∫
Ω*

)∑
C=1

,C

(
%−1C (D̄)

) 5
(
%−1C (D̄)

)
?C

(
%−1C (D̄)

) 3D̄, (4)

where %−1C (D̄) and ?C (Ḡ) are the mapping technique C and its

associated pdf, and,C (Ḡ) is the weight of technique C to Ḡ . This

weight needs to hold

∑)
C=1,C (Ḡ) = 1 whenever 5 (Ḡ) ≠ 0, and

,C (Ḡ) = 0 whenever ?C (Ḡ) = 0.

3.3 Control variates
Another strategy for variance reduction is through control variates.
Assuming a functionℎ (G) of known expected value� = E[ℎ (G)] =∫
Ω ℎ (G) 3` (G) , we can then reformulate Equation (1) as

� =

∫
Ω
5 (G) − Uℎ (G) 3` (G) + U�, (5)

where 5 (G) − Uℎ (G) is the residual with respect to the control

variate and the strength of the control variate ℎ (G) is controlled by

the parameter U . Then, we can compute the Monte Carlo estimate

〈� 〉# for # samples by numerically integrating its residual as

〈� 〉# =
1

#

#∑
8=1

5 (G8 ) − Uℎ (G8 ) + U� . (6)

By minimizing the variance of Equation (6), we obtain that the

optimal choice for U as (see [Robert and Casella 2004, Section 4.4.2])

U = Cov[5 (G) , ℎ (G)]/Var[ℎ (G)], (7)

which leads to a variance on the estimate of Equation (6)

Var[〈� 〉] = Var[5 (G)]
(
1 − Corr[5 (G) , ℎ (G)]2

)
. (8)

To further reduce variance, control variates can be combined

with importance sampling by choosing an appropriate sampling

routine with pdf ? (G) . This transforms Equation (6) into [Owen

2013, Section 9.10]

〈� 〉# =
1

#

#∑
8=1

5 (G8 ) − Uℎ (G8 )
? (G8 )

+ U� . (9)

Unfortunately, in this case we cannot obtain a closed-form optimal

U , and need to compute it by least squares regression of the variance

of the estimate in Equation (9). For simplicity on the implementation,

we opt for computing U following Equation (7). As demonstrated

by Owen and Zhou [2000] this does not change the asymptotic

convergence, and in our tests we observed that it provides a good

tradeo� between computational cost and variance reduction.

4 ADAPTIVE POLYNOMIAL CONTROL VARIATES
To leverage the variance reduction of both control variates and

importance sampling, we build a control variate that approximates

the integrand in primary space. By plugging Equation (3) into

Equation (9) we get

〈� 〉# =
1

#

#∑
8=1

©«
5
(
%−1 (D̄8 )

)
? (%−1 (D̄8 ) ) − Uℎ (D̄8 )

?ℎ (D̄8 )
ª®®¬ + U�, (10)

where the new pdf ?ℎ (D̄) should be as proportional to the residual

as possible. Since obtaining a global optimal ℎ (D̄) is unlikely, we
instead de�ne a piecewise control variate along the whole domain

Ω* . For that, we draw inspiration from quadrature-based

integration [Burden and Faires 2005]. Quadrature integration

approximates the expected value � of the function 5 (G) by means

of a linear combination of samples in 5 (G), weighted by carefully

chosen weights—the quadrature rules—as

� ≈
#ℎ∑
8=1

F8 5 (G8 ), (11)

where #ℎ is the number of samples G8 , with associated weights

F8 . The samples and corresponding weights depend on the chosen

quadrature rule. Several quadrature rules exist: The simplest ones

(Newton-Cotes rules) approximate the function 5 (G) by using a

piecewise-polynomial approximation, by subdividing the space in

deterministic evenly-distributed regions. These techniques can be

made adaptive via nested quadrature rules [Press et al. 2007].
While quadrature rules are biased, their convergence depends on

the nature of the signal, and are strongly a�ected by the curse of

dimensionality. However, polynomial approximations similar to

Newton-Cotes rules satisfy many properties that make them

interesting for using them as the control variate ℎ (G) : The

evaluation is e�cient, the integral is analytical, the construction is

lightweight and adaptive, they can approximate any function 5 (G)
up to a certain degree of accuracy, and they provide an estimate of

the error that can be used as ?ℎ (D̄8 ) for importance sampling the

residual. Our method is illustrated in Figure 2.

In the following, we �rst describe the (multidimensional)

polynomial approximation of 5 (G) , and its adaptive generalization.

Then, we describe how we use ℎ (G) as a control variate to solve

Equation (9), that we will later include into primary space as in

Equation (10). Finally, we analyze the convergence of our

technique as a function of the dimensionality of the signal.

4.1 Piecewise-polynomial control variate
Let us assume for now that 5 (G) ∈ R, with G ∈ Ω = R (we

generalize to R� later in the subsection). Based on Newton-Cotes

composite rules we build our control variate ℎ(G) as a piecewise
approximation of the signal. We divide the integration Ω domain

into " smaller disjoint subdomains ΩA = [0A , 1A ], so that⋃"
B=1 ΩA = Ω and ΩA ∩ ΩB = ∅,∀A ≠ B .
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Original integrand

and pdf

Map integrand to

primary space

Select region with

highest error

Subdivide and

update

Final piecewise

control variate

Monte Carlo sample

of the residual

repeat

(a) (b) (c) (d) (e) (f)

Fig. 2. This figure illustrates our approach in a one-dimensional integral. The algorithm starts (a) from the integrand (in red) and a pdf (in blue). The pdf
provides a mapping to primary space (b). Then the piecewise control variate (in green) is calculated by iteratively selecting the highest error region (c) and
spli�ing it into two subregions (d) for a specified number of iterations. Once the control variate is obtained (e), the final integral is obtained by sampling the
residual di�erence between the primary space integrand and the control variate (f).

For each disjoint subdomain ΩA , we approximate 5 (G) , with
G ∈ ΩA , as a polynomial

5 (G) ≈ ℎA (G) =
=∑
8=0

2A,8G
8 , (12)

where = is the order of the polynomial de�ned in ΩA (order two in

our case) and 2A,8 are its coe�cients. The coe�cients 2A,8 are

calculated by interpolating from a set of uniformly distributed

samples 5 (GA,8 ), where (GA,8 )8∈[0,=] ∈ ΩA , with GA,0 = 0A ,

GA,8+1 = GA,8 + ℎA and ℎA = (1A − 0A )/=. We interpolate through a

precomputed linear system of equations over a monomial basis by

inverting the Vandermonde matrix that de�nes such a system of

equations. This approach naturally extends to higher-order rules

and multiple dimensions.

Since the polynomial can be integrated analytically, we can

obtain weightsFA,8 that de�ne the order-= quadrature rule through

interpolation by substitution as∫
ΩA

5 (G)3G ≈ �A =

=∑
8=0

FA,8 5 (GA,8 ), (13)

which is a standard approach for deriving the weights within

quadrature rules. In general, for low-order known quadrature rules

(such as Simpson’s rule, used in this paper) there is no need to

derive such weights because they can be found in the

corresponding literature. We can compute the integrand for the full

domain Ω as the sum of the integrals for all regions as � =
∑
A �A .

Generalizing to R� . For the multidimensional case, where ΩA ∈
R� = {[0A,1, 1A,1] · · · [0A,� , 1A,� ]}, we generalize Equation (12) for

G ∈ R� and G = {G1 · · · G� }, as

ℎA (G) =
=∑

81=0

· · ·
=∑

8�=0

2A,{81 · · ·8� }

�∏
9=1

G
8 9
9
, (14)

where 2A,{81 · · ·8� } is the polynomial coe�cient. We calculate the

coe�cients using the same approach as for a single dimension by

interpolating from a multidimensional grid using a linear system

over a multivariate monomial basis. For integration, we apply

Fubini’s theorem, and build the multidimensional rules as

∫
ΩA

ℎA (G)3G =

�∑
3=1

=∑
8=0

FA,{3,8 } 5 (GA,8 ), (15)

where the weighsFA,{3,8 } are obtained from the product of the one-

dimensional rule’s weights, and G8 form a �-dimensional grid of

sampled points in ΩA .

Multiple mappings. We can leverage the variance reduction

provided by using multiple importance sampling (MIS) in Monte

Carlo integration [Veach and Guibas 1995] by combining multiple

mappings to reduce the error when computing � . Assuming the

integration domain is the primary space (i.e., ΩA ∈ Ω* ), we

introduce ℎ(G) in Equation (4) and move the sum out of the

integral as

�A =

)∑
C=1

∫
ΩA

,C

(
%−1C (G)

)
ℎ(G) 3G

=

=∑
8=0

FA,8

)∑
C=1

,C

(
%−1C

(
GA,8

) ) 5
(
%−1C

(
GA,8

) )
?C

(
%−1C

(
GA,8

) ) . (16)

4.2 Adaptive approximation
So far, we have not assumed any speci�c distribution of the regions

{A } within the domain Ω. Such distribution might be uniform

(equally partitioning the domain), but this could be suboptimal.

Ideally, we would like to have a �ner sampling rate in regions

where our order-= polynomial fails at approximating 5 (G) , while
leaving a coarser sampling in areas with lower error.

In this context nested quadrature rules provide the tool for adaptive
numerical approximation. The key idea is to use two quadrature

rules of di�erent order for approximating the same integral. The

higher-order rule is used as an oracle of the integrated signal �A for

each region A , and the low-order rule as the approximation of the

integrand �A . The di�erence between both rules is the estimate of

the error �̂A . This estimation of the error is then used to select the

region to subdivide.
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More formally, let the two estimates �h

A and � l

A computed using

quadrature rules of order =
h
and =

l
respectively, with =

h
> =

l
, be

�h

A =

=h∑
8=0

Fh

A,8 5

(
Gh8

)
and � l

A =

=l∑
8=0

F l

A,8 5

(
G l8

)
, (17)

where Gh
8
and G l

8
are the samples for each rule, and Fh

A,8
and F l

A,8

their corresponding weights. For the rules to be nested, it is required

that

{
G l
8

}
⊂
{
Gh
8

}
, which allows reusing samples when computing

both rules. Then, the estimate of the error is �̂A = |�h

A − � l

A |. In
this work we use the Simpson-Trapezoidal nested rule (=

h
= 2 and

=
l
= 1).

Subdivision strategy. Most nested quadrature rules use a tolerance

parameter to subdivide until the error is below a threshold. In our

context, we cannot use this approach since we would like to specify

a samples budget. Our algorithm iteratively subdivides the region

A with highest �̂A , until we reach the input budget of samples #ℎ .

To e�ciently obtain the region with maximum error, we store the

regions at a given step in a heap structure, which is updated on

each iteration. Starting from a single initial subdivision that covers

the whole integration range, we split, for each required subdivision,

the top of the heap using binary splitting along the dimension of

highest error. Each splitting requires a �xed number of samples

according to the involved quadrature rules and the dimensionality

of the problem, so the sample count #ℎ is linear with the number of

regions" . With quadrature rules with evenly distributed samples, a

subset of the samples of each subregion comes from the previously

subdivided one, leading to deterministic sample count as

#ℎ = (=
h
+ 1)� + (" − 1) =

h
(=

h
+ 1)�−1 . (18)

Note that depending on the (deterministic) positions of samples{
Gh
8

}
, high-frequency features might be missed by the error

estimation. This can lead to regions with an inaccurate polynomial

approximation ℎA (G) that are kept stagnant (i.e., never subdivided).
To avoid this pitfall, we add a term to the error that accounts for

the size of the region, so larger inaccurate regions can also be

subdivided. As the error estimation must be calculated per

dimension 3 (to split the dimension of highest error) the �nal form

of �̂A,3 is

�̂A,3 =

����h,d

A − �
l,d

A

��� + (
1A,3 − 0A,3

)
n, (19)

where �
l,d

A is the integral of the control variate ℎA (G) using the

higher order rule ℎ for all the dimensions except for dimension 3

(in which we apply the lower rule ; ), 0A,3 and 1A,3 are the lower and

upper limits of the integration domain ΩA for dimension 3 , and n is

a positive constant. Intuitively, n is related to the uniformity of the

subdivisions: Larger values lead to a more uniform region size

distribution, while smaller values will lead to subdivisions

proportional to the estimated error. We empirically set n = 10
−5
.

Figure 3 shows our polynomial approximation (the control

variate) and the residual for two two-dimensional functions: The

control variate accurately captures the low frequency regions of the

function, while the high frequency details remain in the residual.

Integrand Control variate Residual

(a) (b) (c)

Fig. 3. Integration of two two-dimensional functions (a), its piecewise-
polynomial approximation used as control variate (b, boundaries of each
region in green), and the corresponding residual (c, where red and blue are
the positive and negative residual, respectively).

Control variate for subdomains and bucketing. While the control

variate ℎ (G) is de�ned for the integration domain Ω, it can also be

applied to any subdomain Ω1 ⊂ Ω. While the integral for the whole

domain Ω is � =
∑
A �A , the integral of the subdomain is∫

Ω1

ℎ (G) 3G =
∑
A

∫
ΩA∩Ω1

ℎA (G) 3G . (20)

This is especially useful when bucketing (discretizing) the same

integrand into a set of buckets (e.g., the pixels of an image or video).

In these cases, the same control variate ℎ (G) can be applied for

computing all buckets, e�ectively amortizing the construction of

the control variate along multiple buckets. In Sections 6 to 8 we

apply this strategy in image space where each pixel is an

independent bucket but the control variate is shared among all

pixels. Furthermore, in Section 7 we compare this bucketing

strategy against computing the control variate per pixel, showing

faster convergence and higher pixel coherence when bucketing.

4.3 Residual integration
So far we have described our adaptive construction of the

piecewise-polynomial approximation of the integral in the primary

domain. Now we describe how we compute the estimate in

Equation (10). In order to reduce variance of the estimate, we

would like to draw samples with a pdf ?ℎ (D̄) that is approximately

proportional to the residual, so that ?ℎ (D̄) ∝∼
5
(
%−1 (D̄)

)
? (%−1 (D̄) ) − Uℎ (D̄) .

Assuming that the error guiding the construction of our control

variate �̂A,3 (Equation (19)) is a good estimate of the residual, and

that the regions A subdividing the primary domain have roughly a

similar error, we can uniformly sample a region with probability

"−1
, and then sample uniformly within the chosen region. The

resulting pdf is ?ℎ (D̄) = 1

" |ΩA (D̄) | , where |ΩA (D̄) | is the

hypervolume of the selected region A , and " is the number of

regions. Note that this pdf is applied only for integrating the

residual in primary space, on top of any other importance sampling
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Fig. 4. Average error, cost, and e�iciency maps (brighter means higher in logarithmic scale) for a set of integrals with increasing dimensionality, as a function
of the number of samples allocated to building the control variate and to integrate the residual (horizontal and vertical axes, respectively). The le�most
column in each map represents Monte Carlo integration, while the bo�om row in each map represents nested quadrature (Simpson-Trapezoidal). Top row:
integration over the full integral domain. Bo�om row: integration into 1000 buckets (pixels), with sample count representing samples per bucket. The white
lines show the optimal ratio between the number of samples allocated to compute the control variate and the residual.

strategy used for the corresponding application. When bucketing

(see last paragraph of the previous section) we �rst stratify per

bucket (pixel), search all regions of the control variate falling in the

bucket, and then uniformly sample each region within the bucket

using ?ℎ (D̄) . We select a per-bucket U = Cov[〈� 〉, 〈� 〉]/Var[� ]
(Equation (7)), where we estimate Cov[〈� 〉, 〈� 〉] and Var[� ] from
the set of random samples falling within the bucket. Note that

computing U from the same set of samples used to estimate 〈� 〉
results into a negligible but non-zero bias on the �nal result; this

bias vanishes as we increase the number of samples [Owen 2013,

Section 8.9].

4.4 Analysis
Here we analyze the performance of our technique as a function of

the samples used for building the control variate (built using a

Simpson-Trapezoidal nested rule), and for computing the residual.

We integrate a number of functions of increasing dimensionality

(from 2D to 4D), and include the boundary cases, i.e., Monte Carlo

and quadrature for comparison. Analysis for each individual

function can be found in the supplemental (Section S.1).

Figure 4 shows the average error, cost, and the product between

cost and error for each function’s dimensionality when integrating

over the full domain (top), and projecting the integral into buckets

(bottom). The horizontal and vertical axes represent the number of

samples for generating the control variate and for computing the

residual, respectively. As expected, the increased dimensionality

slows down the convergence rate of the control variate, while the

residual converges with the usual rate in Monte Carlo integration.

In terms of cost, the samples generating the control variate are more

expensive than Monte Carlo samples, speci�cally when integrating

the full domain (top row). However, this cost is amortized when

subdividing the integration domain into buckets (bottom row).

Pure Simpson-Trapezoidal quadrature integration (bottom row in

each map, marked as ST ) seems to converge relatively fast, but its

convergence is irregular and it introduces bias that translates into

perceivable artifacts. These artifacts, as well as higher-order nested

rules, are explored in the supplemental (Section S.4).

By computing the e�ciency of the integration (as a function of

the time and error, and the number of samples and error), we found

that there is an optimal trade-o� between the samples allocated to

the control variate and to the residual. Such optimal trade-o� is,

on average, one sample for the control variate out of three for full

integrals and one sample out of 16when amortizing among di�erent

buckets (white dashed line in the e�ciency maps). These ratios are

used for all the results in this paper.

4.5 Implementation
We implement our adaptive control variate as a generic template in

C++. It is agnostic to the nature of the function being integrated, and

easy to integrate into other systems. We plug it in Mitsuba [Jakob

2010], which provides the function to be integrated.

We compute the results on an Intel Xeon Gold 6400 3.7 GHz CPU

workstation with 256 GB of RAM. We measure the error using the

root mean square error (RMSE).

We build the control variate using a Simpson-Trapezoidal nested

rule. This results in an order-two polynomial approximation of the

signal. For each iteration, we deterministically draw three samples

per dimension. For bucketing we use a box �lter as the

reconstruction kernel. Including other kernels with analytical

integration is left as future work. For the residual, we randomly

sample the regions as described in Section 4.3 using a 64-bit

Mersenne twister random number generator.

Based on our analysis in Section 4.4, in all our results we allocate

1/3 (full integrals) and 1/16 (amortized samples by bucketing) of the

total samples to build the control variate, while the rest are used to

compute the residual. Detailed cost breakdown for all our results

can be found in the supplemental (Section S.3).

5 APPLICATION 1 : ADAPTIVE RESIDUAL RATIO
TRACKING

Here we apply our technique to the computation of transmittance

in heterogeneous participating media. As light travels from position

x0 to x1 through a participating medium, it is attenuated following

the one-dimensional integral ) (x0, x1):

) (x0, x1) = exp (−g) = exp

(
−
∫ C

0

` (xB )3B
)
, (21)
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Fig. 5. Renderings of two purely absorbing media, with high (first row,
Hetvol) and low (second row, Smoke) densities, computed using delta
tracking [Woodcock et al. 1965], residual ratio tracking [Novák et al. 2014],
and our adaptive residual ratio tracking (full image). The three methods
have approximately the same number of media queries.
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Fig. 6. Convergence for the scenes in Figure 5 as a function of media queries
(le� and middle right) and core time in seconds (middle le� and right) for
delta tracking, residual ratio tracking using the average extinction as control
extinction, and our adaptive control variate. We compute the error metric
over the entire image.

with C = |x1 − x0 |, ` (x) the extinction coe�cient at x, xB = x0 + B l ,
and l =

x1−x0
C .

Several unbiased Monte Carlo-based methods have been

proposed to numerically solve Equation (21), based on the key idea

of introducing null virtual particles to �ll the medium, resulting in

a constant virtual extinction (the majorant ¯̀, see [Novák et al.

2018] for an in-depth overview on the topic), at the cost of

introducing variance. Residual ratio tracking [Novák et al. 2014]

reduces variance by introducing a control extinction `2 ,

transforming Equation (21) to

) (x0, x1) = exp

(
−
∫ C

0

` (xB ) − `2 (xB )3B + `2 C

)
. (22)

Note that the estimate of g in Equation (22) is essentially Equation (5)

with U = 1. Unfortunately, this approach uses a constant `2 , which

works well if the signal varies slightly around ` (xB ), but that might

increase variance if `2 diverges from the actual extinction. While in

practice this is partially solved using a piecewise constant (or linear)

estimate of `2 , it requires precomputing a supervoxel hierarchy

which limits its applicability to voxelized media, while still requiring

heuristics to solve special cases. Instead, we propose to use our

adaptive polynomial approximation as the control extinction `2 (xB ).
We analyze the performance of our technique against residual

ratio tracking with constant precalculated `2 (set to

`2 =
∫ C

0
` (xB )3B , which is the optimal parameter according to the

authors) and delta tracking [Woodcock et al. 1965]. In all cases we

use the same tight majorant ¯̀ = maxx (` (x)). We build our control

variate by performing three iterations, which results in a small

overhead (just nine additional medium queries).

Figure 5 shows a comparison between the three techniques at an

equal number of media queries, for two absorbing heterogeneous

media with high (Hetvol, top) and low density (Smoke, bottom).

Without introducing a spatially-varying control extinction `2 (using,

e.g, supervoxels), residual ratio tracking introduces noise in regions

where the extinction deviates signi�cantly from `2 , resulting in

higher variance than delta tracking. While this could be alleviated

by subdividing the space in subvolumes with tighter majorants and

control extinctions, these would also bene�t our method.

Figure 6 shows the convergence of the three methods. As

expected, the performance of residual ratio tracking and our

method are related to the quality of the approximation. When

residual ratio tracking performs well, our technique in general

performs similarly. However, when a constant control fails at

representing the medium extinction (e.g., in cases with

non-uniform densities), our technique adapts to the signal without

introducing a signi�cant overhead. We refer the reader to the

supplemental (Section S.2) for more examples.

6 APPLICATION 2 : LOW-ORDER SCATTERING
We apply our technique to computing one- and two-bounces

scattering in homogeneous media from a point light source (1D

integral) and a collimated beam (2D integral), respectively. In both

cases, we want to compute the radiance at point G> from direction

l as

!(G, l) =
∫ C

0

) (G, GB )fB!8 (GB , l) 3B, (23)

where C is distance of intersection of the ray, GB = G −l C ,) (G, GB ) =
4−fC ‖GB−G ‖ is the transmittance between G and GB , fC and fB are

the extinction and scattering coe�cients, and !8 (GB , l) is the in-

scattered radiance. For light incoming from a point source then

!8 (GB , l) =
Φ;

‖GB − G; ‖2
+ (G; , GB )) (G; , GB )d (G; → GB → G> ), (24)

where G; and Φ; are the light’s position and intensity,+ (G; , GB ) is the
binary visibility term, and d (G; → GB → G) is the phase function at

GB .

In the case of the light source being a collimated beam de�ned by

position G; and direction l; , then !8 (GB , l) becomes an additional
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Fig. 7. Equal-samples (64 spp) comparison between Monte Carlo, Simpson-Trapezoid quadrature [Muñoz 2014] and our technique for computing single
sca�ering from a point light source in isotropic homogenous media. Our technique yields more accurate results and recovers both the smooth global structure
of light transport and the high frequency details of the scene, while remaining unbiased.
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Fig. 8. Convergence for the scenes in Figure 7 for Monte Carlo integration,
Simpson-Trapezoid quadrature [Muñoz 2014], and our technique, as a
function of the number of samples and core time in seconds.

1D integral [Novák et al. 2012] as

!8 (GB , l) =
∫ C ′

0

Φ;
‖GB − G; ‖2

+ (GB , GB′)) (G; , GD )) (GB , GB′)fB (GB′)

d (G; → GB′ → GB )d (GD → GB → G)3B ′, (25)

where C ′ is distance of intersection of the light beam, with GB′ =

G; + l; B
′
. We amortize the cost of generating the control variate

along pixels by bucketing an additional integration domain (image

plane). This results into two integration problems of three (point

light) and four dimensions (collimated beam).

Figure 7 shows the results for single scattering in isotropic

homogeneous media. We compare against pure Monte Carlo, as

well as the quadrature-based integration proposed by

Muñoz [2014] for single scattering. In all cases, we use equiangular

sampling for mapping to primary space [Kulla and Fajardo 2012].

Muñoz’s approach [2014] integrates only along a single

dimension (the ray distance), missing some high-frequency details

(e.g., discontinuities). In contrast, our control variate adapts over a

three-dimensional space (screen space and ray distance), which

allows �nding potential discontinuities along these multiple

dimensions. Moreover, these discontinuities and high-frequency

content are handled on the residual by Monte Carlo integration. As

shown in Figure 8, the ability to handle both low- and

high-frequency parts of the integrand results in better convergence

than both alternative limit cases.

Fig. 9. Equal-samples (64 spp) comparison between Monte Carlo and our
technique for computing two-bounce sca�ering from a collimated beam
in isotropic homogenous media. While pure Monte Carlo generates high-
frequency noise, our approach excels at the smooth regions, accurately
handling the sharp details.
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Fig. 10. Convergence for the scenes in Figure 9 for Monte Carlo integration
and our technique, as a function of the number of samples and core time in
seconds.

Similar trends can be found for the case of two-bounce

scattering, as shown in Figures 9 and 10. In this case, we use the

two-dimensional mapping proposed by Novak et al. [2012]. Again,

our control variate is able to recover most of the low frequencies

common in scattering media, while the details are handled by

means of Monte Carlo integration of the residual.
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Fig. 11. MIS Test: Comparison of our approach with individual specific
mappings to primary space (le� column) only sampling the emi�er (top)
or the BRDF (bo�om). Right column shows results with both combined
mappings (MIS) with our technique (top) and Monte Carlo (bo�om). Notice
how the ability to exploit multiple mappings be�er fits our control variate
to the integrand.

7 APPLICATION 3 : DIRECT ILLUMINATION
Here we compute direct illumination at a point G as seen from a

direction l . We solve the rendering equation, as an integral over all

points G; on the surface of the emitters �:

!(G, l) =
∫
�

Φ(G; → G)�(G; → G → l)+ (G ↔ G; )� (G ↔ G; ) 3G; ,
(26)

where Φ(G; → G) is the radiance emitted at ~ towards G , �(G; →
G → l) is the bidirectional re�ectance distribution function (BRDF)

at G , and � (G ↔ ~) is the geometric attenuation.

As discussed in Section 3.2, our technique leverages the use of

multiple mappings in primary space (Equation (4)) in our adaptive

polynomial control variate. We solve Equation (26) by combining

BRDF and emitter sampling techniques using the power

heuristic [Veach and Guibas 1995]; we illustrate the e�ect of each

technique in Figure 11. Note that other sophisticated sampling

methods could be applied on top of our technique.

Figure 12 shows a visual comparison of several scenes with

di�erent types of emitters and materials. We compare the

performance of computing the control variate per pixel ("Ours 2D",

resulting in a 2D integral per pixel) and building a single control

variate on the full image ("Ours 4D", resulting in a single bucketed

4D integral). Both approaches result in less noise than Monte Carlo

for the same number of samples. In addition, bucketing the full

image space ("Ours 4D") results in both less error and structure on

the noise. Figure 13 shows the convergence for the three scenes: In

all cases there is a similar trend, with a faster convergence of our

technique, specially when bucketing the full 4D integration

domain.

Note that, depending on the smoothness and complexity of the

signal, our technique may need more samples until the control

variate starts improving convergence.

8 APPLICATION 4 : DISTRIBUTION EFFECTS
As a �nal application, we use our technique for rendering

distribution e�ects such as motion blur or depth of �eld [Cook et al.

1984], which increase the dimensionality of the light transport

problem in one and two dimensions (time and aperture,

respectively). We assume a constant shutter time for motion blur,

and a thin lens model for depth of �eld. In all cases, we amortize

samples along pixels, increasing the dimensionality of our control

variate with the additional dimensions of the sensor.

We compare our method against Monte Carlo integration and

Hachisuka et al.’s multidimensional adaptive technique [2008] in

four di�erent test scene setups (Figure 14): Pool (3D) includes

motion blur, Chess (4D) includes depth of �eld, Helicopter (5D)

features both motion blur and area lighting (Section 7), and Volley

Balls (6D) includes both depth of �eld and area lighting. Our

approach generates low noise results even in challenging scenarios

such as rotational motion blur (Helicopter). In contrast,

Hachisuka et al.’s method [2008], being biased, overblurs the result

due its reconstruction kernel (e.g., the focused ball in Volley Balls

or the glossy re�ections in Helicopter), although it produces

noiseless results in smoother areas.

Figure 15 shows the convergence of our method, compared to

Monte Carlo and Hachisuka’s. Our method converges faster than

Monte Carlo in all the scenes. However, the additional cost of

building and evaluating the control variate might result in a time

penalty in scenes with simple relative cheap sampling evaluation

(e.g., scenes with simple geometry like Helicopter or Volley

Balls). Still, note that the slope of convergence shows that our

approach pays o� in the long run. We refer to Section S.3 of the

supplemental material for the per-scene per-stage temporal cost

breakdown. Our method also converges faster than the method by

Hachisuka et al. [2008], with better or on-par performance with

respect to samples per pixel, and outperforming it in terms of

computational cost. Finally, the method by Hachisuka et al.

requires to store all samples, resulting in a heavy memory

overhead (×140 on average compared with Monte Carlo). In

contrast, our method introduces a signi�cantly smaller memory

footprint (×3 on average) because it only stores the samples for the

control variate (1/16 of the total). The individual memory usage

per scene can be found in the supplemental (Section S.3).

9 BEYOND LOW DIMENSIONALITY
Since our control variate is based on quadrature rules, it is limited

by the curse of dimensionality. This unfortunately limits its

applicability to relatively low-order integration domains. However,

general integration problems in rendering are of arbitrary

dimensionality. In this section we analyze the performance of our

control variate in high-dimensional problems by building a

low-dimensional control variate on top of an estimate of the

high-dimensional integral.
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Fig. 12. Comparison of the di�erent approaches of our technique against Monte Carlo integration for the same number of evaluations of direct illumination.
In all cases, Monte Carlo produces noisier images even with MIS. In contrast, our technique leverages MIS adapting the control variate to the integrand,
yielding be�er results both per pixel ("Ours 2D") and for the whole image space ("Ours 4D"). Furthermore, amortizing the control variate among the whole
image space reduces noise in low frequency areas, removes structured noise, and serves as antialiasing. All results are calculated using 155 spp.

Monte Carlo Ours 2D Ours 4D

Dragon House Classroom

10−3

10−2

mc ours4D 3iter

26 28 210

10−2

mc ours4D 3iter

26 28 210

mc ours4D 3iter

10−2

26 28 210

10−3

10−2

102 103

10−2

103 4·1032·102

10−2

1032·102 4·103

Er
ro

r

Samples Er
ro

r

Samples Er
ro

r

Samples

Er
ro

r

Time Er
ro

r

Time Er
ro

r

Time

Fig. 13. Convergence of the scenes in Figure 12 as a function of the number
of samples and core time in seconds for Monte Carlo, our technique applied
per pixel ("Ours 2D"), and our technique extended to the full image space
and bucketed per pixel ("Ours 4D"). Note that extending our control variate
to 4D results in faster convergence.

Let us rewrite Equation (3) as two nested integrals on orthogonal

subdomains

� =

∫
Ω!
*

∫
Ω∗
*

6({D̄ | ˆ̄D})3 ˆ̄D︸              ︷︷              ︸
6 (D̄)

3D̄, (27)

where 6(D̄) =
5
(
%−1 (D̄)

)
? (%−1 (D̄) ) , the integration domain Ω* ∈ R� is

Ω* = Ω!
*
∪ Ω∗

*
with Ω!

*
∈ R! and Ω∗

*
∈ R�−!

, and {D̄ | ˆ̄D} ∈ R�
is the concatenation of the variables D̄ and ˆ̄D. To construct our

control variate on Ω!
*
we need to evaluate the integrand function

6(D̄) over the set of samples D̄ ∈ Ω!
*
. Unfortunately, this requires

solving a (� − !)-dimensional integral, which is unlikely to have

analytical form. In order to do so, we rely on simple Monte Carlo

integration of this high-dimensional domain, so that

6(D̄) ≈ 1

# ∗
∑
8 6({D̄ | ˆ̄D8 }). Note that this has two main drawbacks: It

only leverages the variance reduction of our control variate for the

�rst ! dimensions of the integral, and the control variate is built

itself on non-perfect samples of the integral, which might result in

an inaccurate control variate. In fact, the Monte Carlo estimate

could introduce variance on top of the error driving the

construction of the control variate (Equation (19)): While in our

experiments we have found that this additional variance has a

small e�ect on the �nal result (we refer to Section S.6 in the

supplemental), even at relatively low # ∗
, exploring a

variance-aware version of Equation (19) to account for uncertainty

of the control variate when computing U is an interesting avenue of

future work.

Figures 1 and 16 illustrate the results of this approach with high-

order indirect illumination, while our control variate is only four-

dimensional, accounting for image space and direct illumination

(Cornell Box I, Cornell Box II, and Bistro) and image space

and depth of �eld (Chess GI). We use four Monte Carlo samples to

compute 6(D̄) when building the control variate (i.e. # ∗ = 4). By

building the control variate by accounting for higher dimensions

of the integral, we can leverage its low-dimensional structure and

explore high-dimensional integrals. This behavior can be seen in

Cornell Box I, where direct light does not reach the ceiling but

the low-dimensional representation of the control variate is able to

account for an estimate of the indirect illumination. This is similar

to the depth of �eld example (Chess GI), where both direct and

indirect illumination are used to compute the control variate for the

integral along the aperture. As shown in Figure 17, leveraging the
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Reference [Hachisuka] OursMC

Fig. 14. Comparison between our approach (le� column), Monte Carlo, and
previous related work [Hachisuka et al. 2008] in four di�erent scenes (with
increasing dimensionality), at equal number of samples (64 spp). The scenes
feature several distribution e�ects including motion blur, depth-of-field
and so� shadows. In all cases, Monte Carlo produces renders with high
variance, while Hachisuka et al.’s approach achieves good results in smooth
domains, but tends to overblur the sharp regions of the scene. In contrast,
our unbiased method outperforms previous work keeping the high contrast
areas sharp.

low-dimensional projection of high-dimensional integrals allows us

to have faster convergence than Monte Carlo, despite not explicitly

accounting for these higher-order dimensions.

9.1 Bucketing in higher dimensionality (video)
Finally, we show that bucketing (Section 4.2) is not limited to image

space (pixels), but can be generalized to higher-dimensional

functions. We add the temporal dimension by rendering a video

amortizing the samples of the control variate for all pixels and

frames. Figure 18 shows a set of frames of a video rendered with a

moving area light source of the Violin scene, while the

supplementary material shows the full sequence, plus other videos

from other applications including single scattering (Pumpkin) and

varying distribution e�ects (Chess). As expected, our integration

Monte Carlo [Hachisuka et al. 2008] Ours
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Fig. 15. Convergence for the results in Figure 14 as a function of the number
of samples and core time in seconds, for pure Monte Carlo, Hachisuka et
al.’s [2008], and our method. The incomplete graphs of Hachisuka et al.’s
technique are due to impractical memory consumption for high sample
count.

technique produces less noise than Monte Carlo, signi�cantly

reducing �ickering (temporal noise) by exploiting temporal

consistency.

10 DISCUSSION
In this paper we have presented a novel Monte Carlo-based

integration technique that takes advantage of variance reduction

through both adaptive control variates and importance sampling.

We combine both by working in primary sample space, which

seamlessly allows for the use of any sample distribution. We design

our control variates as a multidimensional adaptive

piecewise-polynomial approximation of the signal, inspired by

nested quadrature rules. This allows us to accurately reconstruct

low frequencies of the integral using the control variate, and to

leverage Monte Carlo integration of the residual for handling high

frequencies. The combination of both allows for faster convergence

than previous approaches, while remaining unbiased.

We have demonstrated the applicability of our technique in four

di�erent complementary rendering applications: transmittance

estimation in heterogeneous participating media, low-order

scattering in homogeneous media, direct illumination computation,

and rendering of distribution e�ects. All of them show fast

convergence, accurate results, and reasonably low memory

requirements. Note that our technique is generic, not tied to any

speci�c integrand, and could be used in other problems involving

numerical computations of multidimensional integrals with

complex structure. We provide the source code, aiming to inspire

other applications of our method.

The presented integration technique works in primary space,

and is orthogonal to speci�c importance sampling strategies.

Therefore, it can be used in combination with other works that

introduce sophisticated sampling strategies [Vévoda et al. 2018;

Vorba et al. 2014; West et al. 2020]. Furthermore, another avenue of

future work could be to combine our work with modern denoising

techniques [Bako et al. 2017; Gharbi et al. 2019], which can be used

to remove the high-frequency noise coming from the integration of

the residual. A preliminary test in this direction can be found in

Section S.5 in the supplemental.
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Fig. 16. Comparison between Monte Carlo and our approach (le� images) when dealing with high-dimensional integrals. Note that even when our control
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Fig. 17. Convergence curves of the scenes in Figure 16, as a function of then
number of samples and core time in seconds, for both Monte Carlo and our
approach.

The main limitation of our technique comes from the curse of
dimensionality: The generation of our control variate is based on

nested quadrature rules, which scale poorly when the number of

dimensions is very high. While our approach allows the sampling

rate to be linear with respect to iterations, it is still exponential

with the dimensionality. Therefore, our control variate is �xed to a

�nite dimensionality (we tested up to six dimensions in the control

variate in Volley Balls scene), which contrasts with the in�nite

dimensionality of the path integral. However, in Section 9 we have

demonstrated that our technique can be applied to integrals of

arbitrary dimensionality by using Monte Carlo estimates to project

high-dimensional functions on our low-dimensional

piecewise-polynomial control variate. As we have shown in our

examples, this still allows for faster convergence than traditional

Monte Carlo. Finally, our method may su�er from uneven

convergence among di�erent rectangular areas of the image,

produced by uneven distribution of regions in image space, which

only becomes perceivable for low sampling rates. This limitation is

shared with other adaptive techniques in image space. Extended

results of the convergence in those areas can be found in Section

S.7 of the supplemental.

Future work. To generate the control variate, we use the

Simpson-Trapezoidal nested rule. Higher order rules

(Boole-Simpson) were tested but they introduced additional costs

and resulted in unwanted oscillations (Runge phenomenon) as

illustrated in Section S.4 of the supplemental material. More

sophisticated nested rules (e.g., Clenshaw-Curtis or Gauss-Kronrod)

were considered, but the regular distribution of samples of
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Fig. 18. Violin: Selected frames of the same sequence rendered
independently with Monte Carlo versus rendered with our method. All the
videos contain 60 frames with 16 spp for each frame. Note how distributing
samples in time, as our adaptive stage does, helps to reduce variance in the
final video. Full sequences can be seen in the supplementary video.

Newton-Cotes formulas allowed for a high rate of sample reuse.

Still, experimenting with other nested rules as control variates is an

interesting path for future work. In addition, exploring how to �t

polynomial rules from unstructured samples could lead to an

online re�nement of our control variate. Finally, some of our

�ndings might inspire further research. We have presented how to

include multiple importance sampling within quadrature rules,

through multiple mappings to primary space (Sections 3.2 and 7).

We have also introduced a strategy to combine two di�erent

variance reduction approaches (control variates and multiple

importance sampling); exploring alternative combinations is an

exciting avenue for future work.
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